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Introduction:
The earth is perhaps the most obvious exam-

ple of a porous medium. Flows in porous me-
dia are part of our everyday lives, from wa-
ter in the garden, to oil in underground reser-
voirs. The mathematical modeling of flow in
porous media, particularly with the ever increas-
ing power of computers, is playing a fundamen-
tal and increasingly important role in the forecast-
ing of petroleum reservoir performance, ground-
water supply, and subsurface contaminant flow.
A critical underlying problem in the numerical
treatment of these models is the need to resolve
the multiscale structure of heterogeneous geolog-
ical formations. Unfortunately, the length scales
observed in sedimentary laminae range from the
millimeter scale upward, while the simulation do-
main may be on the order several kilometers. As
a result, fully resolved simulations are computa-
tionally intractable, and yet the fine-scale varia-
tions of the model’s parameters (e.g., structure
and orientation of laminae) significantly affect the
coarse-scale properties of the solution (e.g., aver-
age flow rates). This complex interaction of sig-
nificantly different length scales is not unique to
flows in porous media, but arises in many other
disciplines, and is currently studied by T-7 in sev-
eral other important contexts; including compos-
ite materials, global atmospheric and ocean circu-
lation models, and in solid-solid phase transitions.

Homogenization or Upscaling:
The objective of a homogenization or upscal-

ing procedure is to define an approximate math-
ematical model in which theeffectiveproperties
of the medium vary on a coarse scale suitable
for efficient computation, while preserving cer-
tain coarse-scale properties of the fine-scale so-
lution (e.g., average flow rates). To homogenize

A randomly generated permeability field that ex-
hibits variations over several orders of magnitude
is shown in the top image. Brighter colors indi-
cate a higher permeability. MGH has been ap-
plied to this data to generate two successively
coarser representations of the permeability that
are suitable for numerical simulation (the middle
and bottom images).
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or upscale heterogeneous media, the macroscopic
flow model, which contains parameters that vary
on the microscopic or fine-scale, isaveraged, in
some sense, over the microscopic length scales.

For some material properties, upscaling is triv-
ial. For example, the average porosity or sat-
uration of a volume can be accurately approxi-
mated by the arithmetic average of all the porosi-
ties or saturations within that volume. However,
this simplistic approach fails for other medium
characteristics, such as the effective permeabil-
ity, which is the fundamental parameter in single-
phase saturated flow modeling. Even when fine-
scale variations in the permeability are small rel-
ative to the scale of the homogenized cell vol-
ume, the geostatistical arithmetic, geometric or
harmonic averages of the fine-scale permeabil-
ity can differ by orders of magnitude from the
true effective permeability. In addition, the in-
creasing use of geostatistical techniques to infer
physically meaningful fine-scale realizations of
heterogeneous geological formations from sparse
and inherently multi-scale measurement data de-
mands more accurate and efficient homogeniza-
tion procedures.

Multigrid:
The numerical treatment of a mathematical

model ultimately relies on the solution of a sys-
tem of discrete, often linear, equations. Although,
in principle, direct methods could be used to solve
such a system, this is computationally intractable
for large two- and three-dimensional problems.
Instead computational efficiency is achieved with
iterative solution algorithms such as multigrid.

Multigrid methods gained recognition in the
late 1970’s as an efficient algorithm for the so-
lution of the discrete linear systems that arise
from models of diffusive phenomena (e.g., heat
conduction, neutron diffusion, single-phase sat-
urated flow). These methods achieve their effi-
ciency through the recursive use of successively
coarser discrete problems (i.e., a sequence of
coarse-grid discrete operators). Unfortunately,
early multigrid algorithms were fragile, their ef-
ficiency strongly dependent on the variability of
the model’s coefficients. Considerable research

in the early 1980’s, much of it in T-7, led to the
first multigrid algorithms that could be used reli-
ably for a large class of practical problems. The
key to the success of these robustBlack Boxmeth-
ods was the use of the fine-scale discrete model to
construct, through a variational principle, the suc-
cessively coarser coarse-grid operators.

Multigrid Homogenization:
Currently, T-7 is actively involved in both the

modeling of multiscale phenomena and the de-
velopment of multilevel iterative solution algo-
rithms. The development of the multigrid ho-
mogenization (MGH) algorithm for single-phase
saturated flows was motivated by the observation
that equivalent multi-scale issues arise in both
fields. In particular, the robustness and efficiency
of the Black Box multigrid method strongly sug-
gested that its variational coarsening procedure
produced excellent coarse-grid operators. Thus,
it was hypothesized that the coarsening procedure
implicit to Black Box multigrid could be inter-
preted as a homogenization procedure that pro-
duced a coarse-scale discrete model, from which
the coarse-scale model parameters (i.e., the per-
meability) could be extracted.

This interpretation led to the MGH algorithm
[1], which has demonstrated its efficiency and ac-
curacy for fine-scale periodic media in two di-
mensions. We are currently investigating its ap-
plication to general fine-scale structures in two-
and three-dimensional media. In addition, we are
confident that this interpretation will lead to fur-
ther improvements in the variational coarsening
procedure, and hence, to the Black Box multigrid
algorithm.
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